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BUCKLING OF SZMENTS OF TOROIDAL SHEZLS 

By Manuel Stein and John A. McElman 
NASA Langley Research Center 

SUMMARY 

Nonlinear d i f f e r e n t i a l  equations of equilibrium and buckling equations are derived 

- f o r  segments of to ro ida l  she l l s  near t he  equator and f o r  segments near the  crown. The 

equations a re  derived f o r  shallow s h e l l  segments by including appropriate prescribed 

i n i t i a l  displacements i n  the  nonlinear, f la t  plate, strain-displacement equations and by 

varying t h e  t o t a l  po ten t i a l  energy of t he  system. 

equations a re  obtained f o r  simply supported segments near t he  equator having e i t h e r  posi- 

Closed form solut ions t o  the  buckling 

t i v e  o r  negative Gaussian curvature under pressure loading with various inplane support 

conditions. Results are presented i n  the  form of char ts  showing buckling coef f ic ien ts  as  

a f'unction of a curvature parameter associated with the  g i r t h  of t he  s h e l l  and a param- 

e t e r  associated with the  r a t i o  of pr inc ipa l  curvatures. I n  many instances the  r e s u l t s  

ind ica te  s ign i f icant  deviations i n  buckling s t r e s s  f o r  t h e  toro ida l  she l l s  over the  

buckling s t r e s s  f o r  t he  

and support conditions. 

corresponding c i r cu la r  cyl indrical  s h e l l  under s imi la r  loading 

/ / -  
INTRODUCTION 

Shel l s  of double curvature a re  common i n  aerospace vehicle s t ructures ,  and buckling 

i s  of ten an important design consideration f o r  such she l l s .  I n  t h i s  paper nonlinear d i f -  

- f e r e n t i a l  equations of equilibrium and buckling equations are derived f o r  segments of 

t o r o i d a l  she l l s ,  a type of double curvature she l l  which is  a t t r ac t ing  considerable 

i n t e r e s t  at  t h e  present time. 

ments of t o r o i d a l  s h e l l s  near t he  equator 9 e i the r  pos i t ive  o r  negative Gaussian 

cur+aXure ( see  f ig .  1) subjected t o  various pressure loadings. 

Solutions t o  t h e  buckling equations a re  obtained f o r  seg- 

The nonlinear equilibrium equations are  derived f o r  shallow s h e l l  segments by 

including appropriate prescribed i n i t i a l  displacements i n  the  nonlinear, f la t  plate ,  

Strain-displacement re la t ions  and by varying the  t o t a l  po ten t ia l  energy of the  system. 
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These equations reduce t o  the  la rge  def lect ion Donnell equations f o r  t h e  case of a c i r -  

cular  cyl indrical  she l l ,  and t o  the  Marguerre la rge  def lect ion equations f o r  t h e  case of 

a shallow spherical  cap. 

i n  a rigorous manner by assuming the  changes which occur at  buckling t o  be s m a l l .  

s e t  of equations i s  obtained which i s  applicable t o  segments of a to ro ida l  s h e l l  near t h e  

crown, and another set i s  obtained which i s  applicable t o  segments near the  equator. For 

segments near the  equator, t he  c l a s s i ca l  assumption of constant def lect ion p r i o r  t o  

buckling leads t o  buckling equations which are the  same as those given by Becker i n  ref- 

erence 1 fo r  she l l s  of double curvature having constant, but not necessar i ly  equal, 

p r inc ipa l  curvatures. 

The buckling equations a re  derived from the  nonlinear equations 

One 

Closed form solut ions are presented t o  the  buckling equations (obtained by using the  

c l a s s i ca l  assumption) f o r  segments of t o ro ida l  s h e l l s  near t h e  equator subjected t o  

l a t e r a l  pressure. The assumed edge support conditions are simple support e i t h e r  with 

zero edge displacement, with hydrostat ic  pressure loaded edges o r  with freedom f o r  over- 

all edge extension i n  the  ax ia l  direct ion.  

showing buckling stress coeff ic ient  as a function of a curvature parameter associated 

with the  g i r t h  of t h e  s h e l l  and a parameter associated with the  r a t i o  of pr inc ipa l  curva- 

tu res .  The r e s u l t s  indicate  s ign i f icant  deviations i n  buckling stress f o r  the  to ro ida l  

she l l s  over t he  buckling s t r e s s  f o r  the  corresponding c i r cu la r  cy l indr ica l  s h e l l  under 

similar loading and support conditions. 

Results a r e  presented i n  the  form of char ts  

For many buckling problems involving deep she l l s ,  shallow s h e l l  analysis  should give 

I n  t h e  present paper an estimate of t he  engineering estimates t o  overa l l  buckling loads. 

external  buckling pressure f o r  a complete torus  i s  obtained on the  basis of the  study of 

t he  shallow segment near the  outer  equator. 

D 

SYMBOLS 

radius of curvature ( f i g s .  1 and 2) 

const ant  s 

Et3 f l exura l  s t i f f n e s s  of s h e l l  w a l l ,  i n  
- 2 -  



E Young’s modulus 

k pr12 
buckling coeff ic ient ,  - - A 

1 length of s h e l l  

mJn integers  

Nx,Ny,Nxy stress resu l tan ts  i n  rectangular coordinates 

Np,%,N@ stress resu l tan ts  i n  cy l indr ica l  coordinates 

lateral pressure - pos i t ive  i n  posi t ive w direct ion 

cy l indr ica l  coordinates 

radius  of s h e l l  equator ( f ig .  1) 

cen t ra l  radius of t o ro ida l  segment near crown ( f ig .  2) 

s h e l l  w a l l  thickness 

displacements, t angent ia l  and normal t o  t h e  s h e l l  neut ra l  surface 

displacements i n  x and y direct ions 

i n i t i a l  def lect ion 

rectangular coordinates 

curvature parameter, r/a 

buckle wavelength parameter, n l / m  

d i r e c t  s t r a i n s  and shearing s t r a i n  i n  rectangular coordinates 

d i r e c t  s t r a i n s  and shearing s t r a i n  i n  cy l indr ica l  coordinates 

Poisson‘s r a t i o  

t o t a l  po ten t i a l  energy of s h e l l  

where $ is  the  Laplacian operator i n  two dimensions 
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I .  
** 

C 

Subscripts: 

A r e fe r s  t o  prebuckling displacements and s t r e s s  resul tants  

B r e fe r s  t o  buckling displacements and stress resul tants  

A comma indicates  p a r t i a l  d i f f e ren t i a t ion  with respect t o  the  subscripts following 

the comma. 

NONLINEAR DIFFERENTIAL EQUATIONS OF EQUILIBRIUM 

I n  t h i s  section the nonlinear d i f f e r e n t i a l  equations of equilibrium are derived for 

shallow segments of a torus  near t he  equators and near t he  crown. For segments near t he  

equators the equations a r e  derived i n  the  rectangular coordinates of an osculating plane. 

For segments near t he  crown the equations are derived i n  plane polar coordinates. 

both cases t h e  equations a r e  derived from the  s t r a i n s  of nonlinear f l a t  p l a t e  theory 

including i n i t i a l  deflections ( see  ref. 2) using the  minimum po ten t i a l  energy method t o  

obtain equations of equilibrium by the application of a va r i a t iona l  procedure. 

I n  

Segments Near the  Equators 

The strains f o r  t h i n  f la t  p l a t e s  with ii and 7 t he  displacements i n  the  x and 

y directions,  respectively, and with i n i t s i d  def lect ion wo and addi t ional  def lect ion 

w a r e  given i n  rectangular coordinates as follows: 

Y 

2 - 
= v,Y + $(.,Y) + w,ywo,y - zw,m 

- 
Y x y  = u,y + :,x + w,xw,y -+ w,xwo,y + W,y”o,x - 2zw,xyJ 

For an i n i t i a l  deflection corresponding t o  segments at  t h e  outer  equator of a to rus  of 

radius 

curvature 1/a i n  t h e  meridional d i r ec t ion  (see f i g .  l), wo is  taken to be 

r, which has posi t ive Gaussian curvature and which i s  taken here t o  have constant 
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The assumption t h a t  t he  i n i t i a l  def lect ions can be represented i n  quadratic form i s  con- 

s i s t e n t  with shallow s h e l l  approximations. 

def lect ion has negative Gaussian curvature and the corresponding equation f o r  

For segments a t  t he  inner equator the  i n i t i a l  

wo is: 

y2 Y2 
w o = - - + -  2 r  2a 

If eqG&;t:on (2a)  o r  (2b) i s  subst i tuted i n  equations (1) and i f  t h e  following def i -  

n i t ions  a re  used 

v = v - w x .  - 
r 

then 

( 3 )  

J - Y x y  - u,y + v,x + w,xw,y - 2=w,xy 

where t h e  new u and v can be ident i f ied  as the tangent ia l  displacements of t h e  neu- 

tral surface of t h e  shallow s h e l l  and w 

I n  equations ( 3 )  and (4) and i n  the  equations tha t  follow, t h e  convention is  used t h a t  

when the re  is a double s ign the  upper sign applies t o  t h e  s h e l l  with pos i t ive  Gaussian 

curvature and t he  lower t o  the  s h e l l  with negative Gaussian curvature. 

can now be regarded as  the  normal displacement. 

The t o t a l  po ten t i a l  energy of such s h e l l s  subject t o  a l a t e r a l  pressure p i s  

In tegra t ion  i n  t h e  

method by t h e  calculus of var ia t ions  leads t o  the nonlinear d i f f e r e n t i a l  equations of 

equilibrium and consis tent  boundary conditions. 

z di rec t ion  and var ia t ion  according t o  the  minimum po ten t i a l  energy 

The equations of equilibrium are: 

- 5 -  



Nx,x + Nxy,y = O 

NY,Y + Nxy,x = o  

where 

Note t h a t  these equations with 

cylinder and, if i n  addition 

a - i m  are  the  Donnell l a rge  def lect ion equations f o r  a 

r +m, then they reduce, of course, t o  t he  von KQrm6n l a rge  

deflection equations f o r  a f l a t  p l a t e .  

Segments Near the  Crown 

The s t r a ins  f o r  a t h i n  f la t  p l a t e  with an i n i t i a l  def lect ion wo a r e  given i n  polar  

coordinates as follows: 

7 EP = u,P + $(.,P)2 + w,pwo,p - ZW,pp 

where w i s  the  additional def lect ion.  

ments at the crown of a torus  of cen t r a l  

constant meridional curvature l / a  (see 

wo = 

For an i n i t i a l  de f l ec t ion  corresponding t o  seg- 

radius R where t h e  to rus  is  taken here t o  have 

f i g .  2 ) ,  wo i s  taken t o  be 

- ( P  - R I 2  
2a 

As before, t h e  assumption t h a t  t he  i n i t i a l  def lect ions can be represented i n  quadratic 

form is  consistent with the shallow s h e l l  approximation. Thus 
- 6 -  
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+(w>p)2 - ( V ) W , p  - zw ? PP Ep = u,p + 

The t o t a l  p t e n t i a l  energy of such a s h e l l  subject t o  a l a t e r a l  pressure p i s  

Integrat ion i n  the  

method by the  calculus of var ia t ions leads t o  t h e  nonlinear d i f f e r e n t i a l  equations of 

equilibrium and consistent boundary conditions. 

z di rec t ion  and var ia t ion  according t o  the  minimum po ten t i a l  energy 

The equations of equilibrium are 

1 
NP,P + p ( ~ p  - Ne + Npe,e) = 0 

p(~e,e + a p e )  + Npe,p = 0 
1 

where 

These equations with R = 0 

cap equations. 

reduce t o  the  Marguerre la rge  def lect ion shallow spherical  

BUCKLING EQUATIONS 

Buckling equations a re  derived on the  premise of  b i furca t ion  behavior with the  non- 

l i n e a r  equations j u s t  derived used t o  determine the deformations and s t r e s ses  p r io r  t o  

buckling and t o  determine t h e  buckling equations. 
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For t h e  problems considered, the s h e l l  p r io r  t o  buckling deforms axisymmetrically. 

Small changes from t h i s  configuration, not necessarily axisymmetric changes, a r e  con- 

sidered i n  order t o  obtain the buckling equations. 

using the assumption t h a t  the deflection w i s  constant p r io r  t o  buckling. 

Buckling equations are  a l so  derived 

Segments Near the  Equator 

Prior t o  buckling f o r  t he  problems considered the deformations would be axisym- -~ 
metric; thus equations (6), with the  var iables  functions of x only, would apply. Thus, 

f o r  axisymmetric deformations 

NxA,x = O 

NxyA,x = I 
where 

N y ~ = - - - p  Et ( + - + L w 2  WA ] 
2 r + v u ~ , x  a 2 ~ , x  

1 - P  

To the  prebuckling deformations obtainable from these equations and t h e  boundary condi- 

t ions,  small changes t h a t  occur during buckling may be added 

w = w  A + wB), and the  sum should a l s o  s a t i s f y  equations (6) .  

subtracted out a f t e r  t he  sums a re  in se r t ed  i n  equations (6), and terms of higher degree 

than l i nea r  i n  the  buckling displacement may be neglected t o  give t h e  buckling equations 

which follow: 

u = UA + UB, V = VA + VB, 

The above r e l a t ions  may be 
( 
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vhere 

. 

These equations have var iable  coef f ic ien ts  and would be qui te  d i f f i c u l t  t o  solve f o r  many 

cases. 

If, instead, t he  assumption analogous t o  tha t  of cla.ssical  cylinder buckling theory 

i s  made, t h a t  t h e  def lect ion w i s  constant pr ior  t o  buckling (WA = Constant), then with 

it may be seen from equations (14) t h a t  Nfi and NyA 

from which these constants may be determined f o r  d i f f e r -  

p, t h e  pressure, a known constant 

must be constant a l so .  Equations 

en t  inplane end conditions are 

N f i  = 

f-+ % = p  a r J 
I n  these  expressions 

UA = 0 at both ends U A , ~  would be zero. Three d i f f e ren t  inplane end conditions are 

considered f o r  t h e  problems solved i n  t h i s  paper and are discussed i n  a subsequent 

sec t ion .  

u ~ , ~  i s  also constant, and therefore,  f o r  t he  spec ia l  case of 

- 9 -  



With WA a constant t he  buckling equations can be wri t ten 

where 

- Et 
NxyB - 2(1 + p) (uB ,Y + VB,X) 

These buckling equations, obtained through the  classical. assumption, have constant coef- 

f i c i e n t s  and agree with those derived by Becker i n  reference 1; with a --f m they agree 

with the Donne11 equations f o r  buckling of a cylinder.  

Segments Near the  Crown 

Prior t o  buckling, f o r  t h e  problems considered, t h e  deformations would be axisym- 

metric; thus equations (12) with the  var iables  functions of p7 only, would apply: 

2 
i; NpOA + Npt3A,p = 

where 

- 10 - 



P - R  
N ~ A  = - - + p uAJP + 1. w2 

1 - $ P  ( 2 A,p 
Et 

Proceeding a s  f o r  segments near t he  equator, the  buckling equations are 

1 
NpB,p + p(NpB NOB + NpeB,e) = 0 

For t he  segment of t he  toro ida l  s h e l l  near t h e  crown, it is  expected t h a t  the  c l a s s i ca l  

assumption of constant def lect ion 

r e su l t an t s .  

WA p r io r  t o  buckling will give reasonable s t r e s s  

With t h i s  assumption t h e  prebuckling s t r e s s  resu l tan ts  can be found from 

- 11 - 



NpA p - R - + -  a p a  % A  = P 

where 

SOLUTIONS FOR SEGMENTS NEAR EQUATORS 

Closed form solutions t o  the  buckling equations j u s t  derived are  now presented f o r  

simply supported segments of t o ro ida l  she l l s  near t h e  equators under pressure loading 

with various inplane support conditions.  The she l l s  considered extend completely around 

the  equator, and the  equator l i e s  at  t h e i r  midlength ( see  f i g .  1). Shel l s  of both posi- 

t i v e  and negative Gaussian curvature a re  considered. 

The inplane support conditions considered a re  l i s t e d  below together  with the  

and N y ~  determined (on the  bas i s  of t h e  c l a s s i c a l  assumption t h a t  wa i s  a constant)  

from equation (16): 

N u  

- 12 - 



(a) zero edge load 

N f i  = O 

N y A  = Pr 

[b)  hydrostat ic  pressure loaded 

Pr  N u  = - 
2 

N y ~  = pr(l T &) 
( c )  zero edge displacement, uA = O 

With no applied shear s t ress ,  N x y ~  = 0. 

The buckling equations (l7), obtained through t h e  c l a s s i ca l  assumption may be 

wr i t ten  i n  terms of uB, vB, WB as  (dropping the subscript  B)  

7 
I 

- ( N f i w , X X  -I- NyAw,yy + axyAw,xy) = 

With t h e  o r ig in  now taken along the  lower edge, t he  simple support boundary condi- 

t i o n s  on t h e  buckling displacements at  x = 0, 2 are 

w = w , ~  = v = Nx = 0 ( 2 0 )  

- 13 - 



Solit ions which s a t i s f y  the  boundary conditions, equation (20)' and the  d i f f e r -  

e n t i a l  equations (19) f o r  any one of t he  th ree  inplane edge conditions a re  

mrrY 
IJ = A cos -- s i n  - 

2 

v = B s i n  - I@lX cos 4 
2 

IIbTX nY 
w = C s i n  - s i n  - 

1 r 

For the problems considered here m = 1 applies, since it gives the  lowest buckling 

load. The buckling loads found from t h i s  solution as a function of t he  number of c i r -  

cumferential waves n are  given by the following relat ions:  

7 
JI  

k =  f o r  zero edge loading 

4 1222 2 
(I + p2) + -(1 * a$) 

f o r  zero edge displacement ,4 
k * a + (1 5 pos)p2 

a2 * 2pa + 1 

k =  

(1 + 

a = - r and Z = E/-. The buckling pressures are where k = - - 
a' rt 

obtained from equations (22) when 

B f o r  given Z and a. 

k i s  minimized with respect t o  allowable changes i n  

The buckling pressure coeff ic ients  have been calculated for Poisson's r a t i o  

p = 113 and the r e s u l t s  of t h e  calculat ions are p lo t t ed  i n  f igu res  3 t o  6. 

s h e l l  of posi t ive Gaussian curvature under external  pressure t h e  r e s u l t s  f o r  higher 

Values Of z l i e  d o n g  a s t r a igh t  l i n e  as shown on t h e  logarithmic p lo t .  Simple 

r e s u l t s  f o r  the  c r i t i c a l  pressure obtained m d y t i c a l l y  (assuming 

value of Poisson's r a t i o  a re  presented below f o r  these straight l i n e  regions: 

For t h e  

p l a rge )  f o r  any 

- 14 - 



. 

-p = 1 - Et2 f o r  zero edge loading 

f o r  hydrostatic pressure loading 2 Et2 -p = 

la - -m, - I  L' ,- - I' ,, 
\ -  

1 + 2FU + u2 Et2 
-p = - f o r  zero edge displacement 

(1 + a) b(1 - p211'2 ar 

ESTIMATE OF MTERNAL BUCKLING PRESSURE FOR COMPLETE TORUS 

Prebuckling values f o r  t h e  stress resul tants  f o r  t he  pressure loading of a complete 

torus  analogous t o  those obtained fo r  the  shallow s h e l l  (see eq. (20 ) )  a re  

N- = p a t  - 5) 

NyA = P a  I 
and proceeding with these values as  f o r  the  shallow s h e l l  leads t o  

k =  

Finally,  f o r  

va l id  for  a c i r c u l a r  to rus  when 

p large,  t h e  buckling pressure can be estimaieci t o  be (prGkibLy n&. 

i s  much greater  than 2) r/a 

This r e s u l t  ind ica tes  t h a t  t he  torus  buckles when the  circumferential  stress reaches 

E t  
a 0.6 -. The c l a s s i c a l  r e s u l t s  show t h a t  a cylinder of radius a i n  axial compression 

buckles when t h e  a x i a l  s t r e s s  reaches 0.6 - and the  circumferential  stress i s  zero. 

The sphere of radius  under hydrostat ic  pressure buckles when the  stress ( i n  any 

d i r ec t ion )  reaches 0.6 - Et a '  

E t  
a 

a 

However, t he  torus  under hydrostat ic  pressure buckles when 
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t h e  circumferential  s t r e s s  reaches 

t h i s  value. 

0.6 - E t  even though the  meridional s t r e s s  exceeds a 

DISCUSSION OF RESULTS 

Nonlinear equations f o r  segments of t o ro ida l  she l l s  near t h e  equator and near t he  

crown have been derived from f l a t  p l a t e  equations by including appropriate prescribed 

i n i t i a l  deflections.  Buckling equations have been derived f o r  both kinds of segments. 

Ut i l iz ing  the c l a s s i ca l  assumption of constant def lect ions p r io r  t o  buckling, buckling 

equations with constant coef f ic ien ts  have been obtained f o r  segments near t he  equator. 

These equations have been solved i n  closed form f o r  pressure loading of simply supported 

segments with both posi t ive and negative Gaussian curvature having th ree  d i f f e ren t  

inplane edge conditions: (1) zero edge load, ( 2 )  hydrostatic-pressure-loaded, and 

( 3 )  zero edge displacement. 

Results obtained f o r  the  case of ex terna l  pressure buckling with zero edge load 

( l a t e r a l  pressure) a re  presented i n  f igure  3 .  

e t e r  2 associated with the  g i r t h  of the  s h e l l  t h e  external  pressure required f o r  

buckling increases s ign i f icant ly  over t he  buckling pressure f o r  t he  cylinder ( r / a  = 0) 

as the  curvature i n  the  meridional d i rec t ion  is  increased t o  form a s h e l l  of pos i t ive  

Gaussian curvature. The corresponding ex terna l  pressure decreases s ign i f i can t ly  as  t he  

curvature i n  t h e  meridional d i rec t ion  i s  increased t o  form a s h e l l  of negative Gaussian 

curvature. For higher values of 

one-half. 

t he  corresponding s h e l l  ( r / a  = 1) of negative Gaussian curvature the  curve has a slope 

of zero; thus the  curvature contributes l i t t l e  t o  the  s t rength.  

pos i t ive  and t h e  s h e l l  of negative curvature do not buckle under in t e rna l  pressure f o r  

t h i s  inplane edge condition. 

For a given value of t he  curvature param- 

2, t he  curve f o r  t he  cylinder (r/a = 0) has a slope 

For the spherical  segment ( r/a = 1) the  curve has a slope of uni ty .  And f o r  

Both the  s h e l l  of 

Results obtained f o r  t h e  case of external hydros ta t ic  pressure buckling a re  pre- 

sented i n  figure 4. These r e s u l t s  follow t rends  similar t o  t h e  lateral  pressure r e s u l t s  

and again both the  s h e l l  of pos i t ive  and negative Gaussian curvature do not buckle under 
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i n t e rna l  pressure. Again s igni f icant  increases i n  external  pressure required f o r  

buckling a re  avai lable  f o r  she l l s  of posi t ive Gaussian curvature over cylinders of the  

same curvature parameter 

she l l s  of negative Gaussian curvature over cylinders of the  same 

Z, and s igni f icant  decreases i n  buckling pressure occur f o r  

Z. 

Results obtained f o r  the cases or external  ana inzernai  pressure bucbiirig, Lespec- 

t ive ly ,  of she l l s  with zero edge displacement are presented i n  f igures  5 and 6. I n  the  

case of ex terna l  pressure as shown i n  f igure  5 signif icant  increases i n  t h e  pressure 

required f o r  buckling a re  avai lable  f o r  s h e l l s  of both pos i t ive  and negative Gaussian 

curvature over t h a t  f o r  a cylinder at the  same value of the  curvature parameter Z. 

Due t o  t h e  u = 0 condition, t e n s i l e  stresses develop at  t h e  edges t h a t  tend t o  sta- 

b i l i z e  the  s h e l l  of negative curvature as the  r a t io  of radii r/a increases.  The 

s h e l l  with negative Gaussian curvature a l s o  buckles under in t e rna l  pressure with t h i s  

zero edge displacement condition (see f i g .  6 )  provided the  r a t i o  

Poisson's r a t i o  p. As r/a increases f o r  given Z compressive s t r e s ses  at  the  edges 

increase and cause a decrease i n  the  buckling pressure. 

r/a i s  g rea t e r  than 

+ 

CONCLUDING REMARKS 

The present  analysis  starts with accepted (von K'm&) nonlinear f l a t  p l a t e  s t r a i n s  

including i n i t i a l  def lect ions and i n  a consistent and straightforward manner der ives  

nonlinear shallow shell. equations from which buckling equations a re  determined. 

l i n e a r  equations and buckling equations f o r  other shallow she l l s  such as conical frustums 

away from t h e  apex and segments of t o ro ida l  she l l s  away from the  equator o r  crown may be 

derived i n  a s i m i l a r  manner. 

Non- 

Buckling pressures have been obtained i n  chart form f o r  simply supported to ro ida l  

Segments near  t h e  equators having both pos i t ive  and negative Gaussian curvature. 

inplane edge conditions are considered. 

s h e l l s  of l a r g e  Z having pos i t ive  Gaussian curvature are given i n  equation form. A n  

estimate based on t h i s  shallow s h e l l  theory of the buckling pressure of a complete torus  

i s  a l so  given i n  equation form. 

Three 

Limiting values of t he  buckling pressure f o r  
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The present theory is  l imited by the  shallow s h e l l  approximation which, however, 

may not be too  ser ious f o r  deeper s h e l l  buckling analysis.  This conjecture tha t  shallow 

uIIGu bIIGuIy u a y  k e  ~ s e d  t o  a i d y z e  some deep she i i s  i s  based on the  consideration t h a t  

she l l s  buckle f i r s t  where the  curvature i s  most shallow. This consideration was used i n  

estimating t h e  buckling pressure f o r  t h e  complete torus .  

-L-ll CL, . r - .  ---- 

Another l imi t a t ion  of the  present r e su l t s  ex i s t s  because of the  disagreement 

between some s h e l l  buckling solut ions for perfect  she l l s  and experiment. 

der  under external pressure, there  i s  good agreement between theory and experiment. 

ever, f o r  the spherical  segment it i s  expected t h a t  agreement between theory and experi- 

ment w i l l  not be nearly as good as f o r  the  cylinder judging from buckling r e su l t s  f o r  the 

spherical  cap. 

segments and f o r  t he  complete torus .  

only serve as a guide by specifying the  buckling pressure f o r  a per fec t  she l l .  

For the  cylin- 

How- 

Similar l imi ta t ions  probably a r i s e  f o r  t he  buckling of other  t o ro ida l  

Thus, f o r  design purposes t h e  present r e su l t s  may 
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